“陌上花开,可缓缓归矣。”
虾虎乃三人为之金属冶炼队伍,历数铁,为 lr580所嘲之,lr580以为其一人即可治虾虎,数人便约战,恰逢春景尚好,故此战名曰:陌上花开。
在本次赛季共有 n 场比赛,每场比赛虾虎都有三个变动的 rating 值(具体而言,第 i 场比赛第 j 个 rating 值为 a_{ij} ),而 lr580 一人分饰三角,且每场比赛的三个 rating 值都是固定的,分别为 b_1,b_2,b_3。
lr580 只有在以下情况才视为打败了虾虎:对于任意一场比赛 i,都至少存在一个 rating 值不小于虾虎对应的 rating 值。(即 \forall i \in [1,n], \exists j \in [1,3] ,满足 b_j \ge a_{ij})
lr580 每提升一点 rating 值都需要花费精力,为了花费最少的精力,请你求出:在打败虾虎的条件下, b_1+b_2+b_3 的最小值是多少。( b_1,b_2,b_3 均为非负整数)
输入
第一行输入一个整数 n, 表示本赛季的比赛场数。(1 \leq n \leq 10^3)
接下来 n 行,每行输入三个整数,第 i 行第 j 个整数表示 a_{ij} 。(0 \leq a_{ij} \leq 10^9)
输出
输出一行整数,表示你的答案。
样例
标准输入 复制文本 |
1 4 5 6 |
标准输出 复制文本 |
4 |
标准输入 复制文本 |
3 10 3 1 7 4 10 6 10 7 |
标准输出 复制文本 |
8 |
提示
对于样例 1,b_1=4,b_2=0,b_3=0 ,即满足条件,故最小值为 4 。
对于样例 2,b_1=7,b_2=0,b_3=1 ,即满足条件,故最小值为 8 。
来源
2023 天梯赛选拔赛 (重现)