2096. 分治乘法/Dc

小艾想要挑战分治乘法。TA 将策略抽象成了如下问题:

现在给定一个目标集合 TT,该集合是 1,,n{1,\dots,n} 的一个子集(1n5×1051\leq n\leq 5\times 10^5)。你需要通过一系列操作构造一些集合最后得到 TT,具体来说有以下三种操作:

  • 创造一个大小为一的集合 S=1|S|=1
  • 将已经被构造出的两个不交集合 A,BA, B 并起来,得到 ABA\cup B
  • 将已经被构造出的一个集合 AA 进行平移,也即 A+x=a+x:aAA+x = { a+x : a\in A }

一个已经被构造出的集合可以在之后被使用多次。同时你需要保证操作过程中出现的所有集合都是 1,,n{1,\dots,n} 的子集。

你的代价是构造出的所有集合的大小之和,你不需要最小化代价,只需要让代价控制不超过 5×1065\times 10^6 即可。你用的操作数量也不应超过 10610^6

Ai wants to take on the challenge of partition multiplication. Ai abstracts the strategy to the following problem:

Now given a target set TT which is a subset of 1,,n{1,\dots,n} (1n5×1051\leq n\leq 5\times 10^5). You need to construct some sets to finally get TT through a series of operations, specifically the following three operations:

  • Create a set of size one S=1|S|=1.
  • Concatenate two disjoint sets A,BA, B that have already been constructed to get ABA\cup B.
  • Translate an already constructed set AA, i.e. A+x=a+x:aAA+x = { a+x : a\in A }.

A set that has already been constructed can be used many times later. At the same time you need to ensure that all sets that appear during the operation are subsets of 1,,n{1,\dots,n}.

The cost is the sum of the sizes of all the sets constructed, and you don't need to minimize the cost, just keep it to no more than 5×1065\times 10^6. You should not use more than 10610^6 operations.

输入

第一行输入一个正整数 nn

接下来一行输入一个 01 串,长度为 nn,第 xx 位为 1 表示 xTx\in T,否则 xTx\notin T,保证 TT 非空。

The first line inputs a positive integer nn.

The next line inputs a 01 string of length nn, with the xx-th bit being 1 to indicate xTx\in T, otherwise xTx\notin T. It's guaranteed that TT is not null.

输出

第一行输出一个正整数 mm 表示你使用的操作数量。

接下来 mm 行,每行描述一个操作,设第 ii 次操作得到的集合为 TiT_i

  • 1 x 表示创造一个大小为一的集合 x{x}
  • 2 x y 表示将不交集合 Tx,TyT_x, T_y 并起来。
  • 3 x y 表示将已经被构造出的一个集合进行平移,也即 Tx+yT_x+y

你需要保证所有操作满足题目要求,并且最后一次操作产生的集合是 TT

The first line outputs a positive integer mm indicating the number of operations you used.

The next mm lines, each describing one operation, let the set obtained by the iith operation be TiT_i:

  • 1 x denotes the creation of a set x{x} of size one.
  • 2 x y denotes the concatenation of disjoint sets Tx,TyT_x, T_y.
  • 3 x y means to translate a set that has already been constructed, i.e. Tx+yT_x+y.

You need to make sure that all operations satisfy the requirements of the topic and that the last operation produces a set TT.

样例

标准输入 复制文本
5
11011
标准输出 复制文本
5
1 1
1 4
2 1 2
3 3 1
2 3 4

提示

  • 第一次操作:创造集合 T1=1T_1={1}
  • 第二次操作:创造集合 T2=4T_2={4}
  • 第三次操作:将 T1,T2T_1, T_2 并起来,得到 T3=1,4T_3={1,4}
  • 第四次操作:将 T3T_3 平移 11,得到 T4=2,5T_4={2,5}
  • 第五次操作:将 T3,T4T_3, T_4 并起来,得到 T5=1,2,4,5T_5={1,2,4,5}。这就得到了 TT

这个方案的总代价是 1+1+2+2+4=101 + 1 + 2 + 2 + 4 = 10

如果你的复杂度是好的,请相信常数。

  • First operation: create the set T1=1T_1={1}.
  • Second operation: create the set T2=4T_2={4}.
  • Third operation: combine T1,T2T_1, T_2 to get T3=1,4T_3={1,4}. Fourth operation: create the set T3T_3.
  • Fourth operation: translate T3T_3 by 11 to get T4=2,5T_4={2,5}.
  • Fifth operation: combine T3,T4T_3, T_4 to get T5=1,2,4,5T_5={1,2,4,5}. This gives TT.

The total cost of this program is 1+1+2+2+4=101 + 1 + 2 + 2 + 4 = 10.

If your time complexity is good, trust the time constant.

登录以提交代码。
单点时限 1 秒
内存限制 512 MB
提交 5
通过 2