目前在一个很大的平面房间里有 n 个无线路由器,每个无线路由器都固定在某个点上。任何两个无线路由器只要距离不超过 r 就能互相建立网络连接。
除此以外,另有 m 个可以摆放无线路由器的位置。你可以在这些位置中选择至多 k 个增设新的路由器。
你的目标是使得第 1 个路由器和第 2 个路由器之间的网络连接经过尽量少的中转路由器。请问在最优方案下中转路由器的最少个数是多少?
输入
第一行包含四个正整数 n,m,k,r。(2 ≤ n ≤ 100,1 ≤ k ≤ m ≤ 100, 1 ≤ r ≤ 10^8)。
接下来 n 行,每行包含两个整数 x i 和 y i,表示一个已经放置好的无线 路由器在 (x i, y i) 点处。输入数据保证第 1 和第 2 个路由器在仅有这 n 个路由器的情况下已经可以互相连接(经过一系列的中转路由器)。
接下来 m 行,每行包含两个整数 x i 和 y i,表示 (x i, y i) 点处可以增设 一个路由器。
输入中所有的坐标的绝对值不超过 10^8 ,保证输入中的坐标各不相同。
输出
输出只有一个数,即在指定的位置中增设 k 个路由器后,从第 1 个路 由器到第 2 个路由器最少经过的中转路由器的个数。
样例
标准输入 复制文本 |
5 3 1 3 0 0 5 5 0 3 0 5 3 5 3 3 4 4 3 0 |
标准输出 复制文本 |
2 |